California Sportfishing Protection Alliance "An Advocate for Fisheries, Habitat and Water Quality" 3536 Rainier Avenue, Stockton, CA 95204 T: 209-464-5067, F: 209-464-1028, E: deltakeep@aol.com, W: www.calsport.org #### 1 August 2010 Mr. Ken Landau, Assistant Executive Officer Ms. Diana Messina, Supervising WRCE Mr. Jim Marshall, Sr. WRCE Regional Water Quality Control Board Central Valley Region 11020 Sun Center Drive, Suite 200 Rancho Cordova, CA 95670-6144 VIA: Electronic Submission Hardcopy if Requested RE: Amendment of Waste Discharge Requirements Order No. R5-2007-0132-01 (NPDES No. CA0079049) for City of Davis Wastewater Treatment Plant, Yolo County Dear Messrs. Landau, Marshall and Ms. Messina, The California Sportfishing Protection Alliance (CSPA) has reviewed the proposed Amended Waste Discharge Requirements (NPDES No. CA0079049) for City of Davis Wastewater Treatment Plant (Permit) and submits the following comments. CSPA requests status as a designated party for this proceeding. CSPA is a 501(c)(3) public benefit conservation and research organization established in 1983 for the purpose of conserving, restoring, and enhancing the state's water quality and fishery resources and their aquatic ecosystems and associated riparian habitats. CSPA has actively promoted the protection of water quality and fisheries throughout California before state and federal agencies, the State Legislature and Congress and regularly participates in administrative and judicial proceedings on behalf of its members to protect, enhance, and restore California's degraded water quality and fisheries. CSPA members reside, boat, fish and recreate in and along waterways throughout the Central Valley, including Yolo County. The Central Valley Regional Water Board adopted the NPDES permit for the City of Davis on 25 October 2007. CSPA filed a timely petition to the State Water Resources Control Board with the allotted 30-days. Almost a year later, on 2 September 2008, the State Water Resources Control Board adopted Order WQ 2008-0008. A corrected copy of the Order (WQ 2008-0008 corrected) was issued on 15 September 2008 remanding the City of Davis NPDES permit back to the Central Valley Regional Board for correction as follows: CSPA Comments, Central Valley Water Quality Control Board, City of Davis NPDES Permit Revisions. 1 August 2010, page 2 of 33. - "IT IS HEREBY ORDERED THAT, this matter be remanded to the Central Valley Water Board to make revisions to the Permit that are consistent with this order. Specifically, the Central Valley Water Board must do the following: - 1. Amend the Permit to include a narrative limitation for chronic toxicity such as, "There shall be no chronic toxicity in the effluent discharge." - 2. Revise the Fact Sheet to include a discussion of the appropriate hardness to use to protect from acute toxicity impacts (which can occur in short-term periods including storm events) in the receiving waters. The Fact Sheet should also state that the lowest valid upstream receiving water hardness values of 78 mg/l for Willow Slough Bypass and 85 mg/l for Conaway Ranch Toe Drain should be used to determine reasonable potential for the effluent to exceed the hardness-dependent metal CTR criteria, unless additional evidence and analysis, consistent with this Order, demonstrates that different hardness values are appropriate to use and are fully protective of water quality. - 3. Revise the Fact Sheet to indicate that lead, zinc, and nickel do not have the reasonable potential to exceed the applicable hardness-dependent CTR criteria, even using the lowest valid available upstream receiving water hardness value of 78 mg/l for protection of acute toxicity impacts for the Willow Slough Bypass. - 4. Revise the Fact Sheet to state that the effluent at Conaway Ranch Toe Drain does have reasonable potential to exceed the acute and chronic CTR criteria for copper and effluent limitations are needed for this discharge point, unless additional evidence and analysis, consistent with this Order, demonstrates that reasonable potential does not exist. - 5. If the Central Valley Water Board determines, pursuant to paragraph #4, that reasonable potential exists for copper, amend the Permit to add acute and chronic effluent limitations for copper, based on the lowest upstream receiving water hardness for the discharge at Conaway Ranch Toe Drain. A compliance time schedule may be added, if necessary. - 6. Revise the Fact Sheet to state that, based on the lowest upstream receiving water hardness at Willow Slough Bypass, the effluent does not have reasonable potential to exceed the CTR acute water quality criterion for silver, but the effluent at Conaway Ranch Toe Drain does have reasonable potential and an effluent limitation is needed for this discharge point, unless additional evidence and analysis, consistent with this Order, demonstrates that reasonable potential does not exist. CSPA Comments, Central Valley Water Quality Control Board, City of Davis NPDES Permit Revisions. 1 August 2010, page 3 of 33. - 7. If the Central Valley Water Board determines, pursuant to paragraph #6, that reasonable potential exists for silver, amend the Permit to add an effluent limitation for silver for the discharge at the Conaway Ranch Toe Drain and include a compliance time schedule if necessary. - 8. Review the City of Woodland's EC site-specific study to determine whether it provides an appropriate basis for calculating a final EC effluent limitation for the discharge regulated by the Permit, and if so, amend the Permit as necessary to make the appropriate changes for EC, including the addition of an effluent limitation as appropriate, based on that review. If the City of Woodland study is not used, findings justifying that decision must be made. This portion of the Order may take additional time to complete and may be completed after the revisions required by in sections 1-7 are completed." On 1 July 2010, 22 months later, the Regional Board circulated a tentative NPDES permit addressing the State Board's remand. Our comments regarding the proposed City of Davis NPDES permit revisions are as follows: 1. The proposed Permit allows for a defacto mixing zone absent any mixing zone analysis to an ephemeral stream contrary to the mixing zone requirements contained in the Basin Plan and the *Policy for Implementation of Toxics Standards for Inland Surface Waters, Enclosed Bays, and Estuaries of California (SIP)* for temperature and turbidity. The proposed Permit has been modified on page 18 to state that compliance with the Receiving Water Limitations for temperature and turbidity will be determined based on the difference between the upstream and downstream receiving water sampling points. According to the Monitoring and Reporting Program, Order No. R5-2007-0132, page E-2, the Receiving Water sampling locations are: "001 RSW-001U Willow Slough Bypass, 30 ft upstream of Discharge 001 001 RSW-001D Willow Slough Bypass, 200 ft downstream of Discharge 001 002 RSW-002U Conaway Ranch Toe Drain, 30 ft upstream of Discharge 002 002 RSW-002D Conaway Ranch Toe Drain, 375 ft downstream of Discharge 002" The distance between the locations on Willow Slough Bypass is 230 feet and on Conaway ranch Toe Drain is 405 feet. The proposed Permit states, on page F-27 that: CSPA Comments, Central Valley Water Quality Control Board, City of Davis NPDES Permit Revisions. 1 August 2010, page 4 of 33. "c. Assimilative Capacity/Mixing Zone. The State Water Resources Control Board Water Quality Order (WQO) No. 2002-0015, states that the use of the harmonic mean to determine flow rates is inappropriate for ephemeral streams where there is no consistent background dilution. The impact of considering a receiving stream to be ephemeral is that all limitations are "end of pipe" without any benefit of dilution. Since the receiving streams' flows are, at times, immeasurably small to nonexistent, this Order contains "end of pipe" limitations, with no dilution credits." In allowing for the point of compliance to be assessed 200 and 375 feet downstream from the point of discharge, the Regional Board is granting a mixing zone for temperature and turbidity contrary to the Finding regarding *Assimilative Capacity/Mixing Zone*. Mixing zone policies allow a discharger's point of compliance with state and federal water quality standards to be moved from the "end of the pipe" to the outer boundaries of a dilution zone. The area between the point of discharge and the outer boundary of the dilution zone are non-compliant for the applicable objective. The water quality objectives for temperature and turbidity are contained in the Water Quality Control Plan (Basin Plan) for the Sacramento/San Joaquin River Basins, Water Quality Objectives section. The Basin Plan, page III-2.00, states that the water quality objectives are applicable to all surface waters in the Basin. The objective for temperature goes even further in stating that: "at no place or time shall the temperature of COLD or WARM intrastate waters be increased more than 5 degrees F above natural receiving water temperature. The proposed Permit, in stating that compliance will be determined by determining the difference between the upstream and downstream sampling points, allows the intermediate area to exceed the water quality objectives. There is no physical barrier preventing sampling of the receiving stream at the point of discharge to determine compliance. There is also no reason that temperature and turbidity measured of the wastewater effluent discharge cannot be compared to the temperature and turbidity sampled immediately upstream of the point of discharge, eliminating the granting of a mixing zone. The Central Valley Regional Water Quality Control Board's Basin Plan, page IV-16.00, requires the Regional Board use EPA's *Technical Support Document for Water Quality Based Toxics Control (TSD)* in assessing mixing zones. The
TSD, page 70, defines a first stage of mixing, close to the point of discharge, where complete mixing is determined by the momentum and buoyancy of the discharge. The second stage is defined by the TSD where the initial momentum and buoyancy of the discharge are diminished and waste is mixed by ambient turbulence. The TSD goes on to state that in large rivers this second stage mixing may extend for miles. The TSD, Section 4.4, requires that if complete mix does not occur in a short distance mixing zone monitoring and modeling must be undertaken. CSPA Comments, Central Valley Water Quality Control Board, City of Davis NPDES Permit Revisions. 1 August 2010, page 5 of 33. The State's *Policy for Implementation of Toxics Standards for Inland Surface Waters, Enclosed Bays and Estuaries of California* (SIP), Section 1.4.2.2, contains requirements for a mixing zone study which must be analyzed before a mixing zone is allowed for a wastewater discharge. Properly adopted state Policy requirements are not optional. The proposed Effluent Limitations in the proposed Permit are not supported by the scientific investigation that is required by the SIP and the Basin Plan. SIP Section 1.4.2.2 requires that a mixing zone shall not: Compromise the integrity of the entire waterbody. Cause acutely toxic conditions to aquatic life. Restrict the passage of aquatic life. Adversely impact biologically sensitive habitats. Produce undesirable aquatic life. Result in floating debris. Produce objectionable color, odor, taste or turbidity. Cause objectionable bottom deposits. Cause Nuisance. Dominate the receiving water body or overlap a different mixing zone. Be allowed at or near any drinking water intake. The proposed Permit's mixing zones have not addressed a single required item of the Basin Plan or the SIP in allowing a mixing zone for temperature or turbidity. The allowance for a mixing zone has also not been address in an Antidegradation Policy (Resolution 68-16) analysis which would be required as a result of allowing a relaxation from the prescribed Basin Plan objective of all water meeting water quality objectives to an allowance of a mixing zone. 2. Compliance points for Receiving Water Limitations for temperature and turbidity have been modified in the proposed Permit that were not the subject of the State Board's remand back to the Regional Board and are included contrary to the Federal Requirements in federal regulation 40 CFR 122.62(a) which specifies cases for modification of an NPDES permit. Federal Regulations, 40 CFR 122.62, contains limited reasons why a permit can be reopened and modified. Modification of the Receiving Water Limitations, which was not addressed in the State Board remand, for temperature and turbidity does not meet any of the tests required to reopen and modify the permit. The proposed Permit does not address the regulatory requirements or standards for reopening and modifying the permit for temperature and turbidity. CSPA Comments, Central Valley Water Quality Control Board, City of Davis NPDES Permit Revisions. 1 August 2010, page 6 of 33. 3. The proposed Permit Utilizes Translators for Metals that result in discharge limitations that are not protective of the aquatic life beneficial uses of the receiving stream and does not utilize the applicable numeric water quality standard or criteria contrary to federal regulation 40 CFR 122.44(d). The US Fish and Wildlife Service (Service) and the National Marine Fisheries Service (NMFS) biological opinion requires that whenever a threatened or endangered species is present downstream from a discharge where a State developed translator will be used, EPA will work with the permitting authority to ensure that appropriate information, which may be needed to calculate the translator in accordance with the applicable guidance, will be obtained and used. The Regional Board failed to consult with EPA, the US Fish and Wildlife Service and the National Marine Fisheries Service regarding the metals translators. Section 122.44(d) of 40 CFR requires that permits include water quality-based effluent limitations (WQBELs) to attain and maintain applicable numeric and narrative water quality criteria to protect the beneficial uses of the receiving water. The proposed Permit, pages F-16 and F-17, states that: "The site-specific translators for copper, lead, and nickel based on the effluent monitoring data are appropriate for development of end-of-pipe water quality-based effluent limits. Therefore, this Order allows the use of the site-specific metals translators based on the effluent." The receiving stream, at both discharge points, is either within the Yolo Bypass or immediately enters the Yolo Bypass. The Yolo Bypass has been documented to contain threatened and endangered species. "Unlike conventional flood control systems that frequently isolate rivers from ecologically-essential floodplain habitat, California's Yolo Bypass has been engineered to allow Sacramento Valley floodwaters to inundate a broad floodplain. From a flood control standpoint, the 24,000 ha leveed floodplain has been exceptionally successful based on its ability to convey up to 80% of the flow of the Sacramento River basin during high water events. Agricultural lands and seasonal and permanent wetlands within the bypass provide key habitat for waterfowl migrating through the Pacific Flyway. Our field studies demonstrate that the bypass seasonally supports 42 fish species, 15 of which are native. The floodplain appears to be particularly valuable spawning and rearing habitat for the splittail (*Pogonichthys macrolepidotus*), a federally-listed cyprinid, and for young chinook salmon (*Oncorhynchus tshawytscha*), which use the Yolo Bypass as a nursery area. The system may also be an important source to the downstream food web of the San Francisco Estuary as a result of enhanced production of phytoplankton and detrital material. These results suggest that alternative flood control systems can be designed without eliminating floodplain function and processes, key goals of the 1996 Draft AFS CSPA Comments, Central Valley Water Quality Control Board, City of Davis NPDES Permit Revisions. 1 August 2010, page 7 of 33. Floodplain Management Position Statement." (http://afsjournals.org/doi/abs/10.1577/1548- 8446%282001%29026%3C0006%3ACYB%3E2.0.CO%3B2?journalCode=fish) "The Lower Yolo Bypass is the most downstream portion of the Yolo Bypass (Bypass), a massive levied floodway located west of the Sacramento River and within Yolo and Solano Counties. The Bypass provides flood conveyance for the cumulative high flows from several northern California waterways to the Sacramento-San Joaquin River Delta (Delta). In addition to flood conveyance, the Bypass provides critical habitat to a variety of species including numerous plant and bird species and threatened and endangered fish such as the Delta Smelt and Sacramento Splittail. The Bypass also provides recreation opportunities, including widespread hunting and fishing use." (http://www.delta.ca.gov/volo.htm, Delta Protection Commission) "Our results show that the Yolo Bypass provides valuable aquatic habitat to 42 fish species, 15 of which are native (Table 2). Many of these species are year-round residents in perennial waters in the floodplain. The bypass seasonally supports several state and federally-listed species: delta smelt (*Hypomesus transpacificus*), splittail, steelhead trout (*Oncorhyncus mykiss*), and spring-run and winter-run chinook salmon. Popular game fish are also present including white sturgeon (*Acipenser transmontanus*), striped bass (*Morone saxatilis*), largemouth bass (*Micropterus salmoides*), and white crappie (*Pomoxis annularis*)." (Fisheries | www.fisheries.org | vol 26 no 8, http://online.sfsu.edu/~kimmerer/Files/Sommer%20et%20al%202001%20Fisheries.pdf) "The Sacramento splittail is a cyprinid fish endemic to the Central Valley of California with a range that centers on the San Francisco Estuary. Spawning occurs in flooded vegetation, including the Yolo Bypass, with older fish spawning first. Peak reproduction occurs in March and April though splittail are fractional spawners, so the process may take months." (http://www.fws.gov/cno/press/release.cfm?rid=79) On March 24, 2000 the US Fish and Wildlife Service (Service) and the National Marine Fisheries Service (NMFS) issued a biological opinion on the effects of the final promulgation of the CTR on listed species and critical habitats in California in accordance with section 7 of the Endangered Species Act of 1973, as amended (16 USC 1531 et seq.; Act). The biological opinion was issued to the U.S. Environmental Protection Agency, Region 9, with regard to the "Final Rule for the Promulgation of Water Quality Standards: Establishment of Numeric Criteria for Priority Toxic Pollutants for the State of California" (CTR)". The document represented the Services' final biological opinion on the effects of the final promulgation of the CTR on listed species and critical habitats in California in accordance with section 7 of the Endangered Species Act of 1973, as amended (16 USC 1531 et seq.; Act). The biological opinion contained the following discussion with regard to Conversion Factors and Translators. #### "Conversion Factors and Translators EPA derived ambient metals criteria from aquatic toxicity tests that observed the doseresponse relationships of test organisms under controlled (laboratory) conditions. In most of these studies, organism responses were plotted against nominal test concentrations of metals or concentrations determined on unfiltered samples. Thus, until recently metals criteria have been expressed in terms of total metal concentrations. Current EPA metals policy (USEPA 1993a) and the CTR in particular propose that criteria be expressed on a dissolved basis because particulate metals contribute less toxicity than
dissolved forms. EPA formulas for computing criteria thus are adjusted via a conversion factor (CF), so that criteria based on total metal concentrations can be "converted" to a dissolved basis. Metals for which a conversion factor has been applied include arsenic, cadmium, chromium, copper, lead, mercury, nickel, silver, and zinc. The CF is a value that is used to estimate the ratio of dissolved metals to total recoverable metals to adjust the former criteria based on total metal to yield a dissolved metal criterion. A CF based on the premise that the dissolved fraction of the metals in water is the most bioavailable and therefore the most toxic (USEPA 1993a, 1997c). The presumption is that the dose/response relationships found in toxicity tests would be more precise if "dissolved" metal concentrations were determined in test solution samples that have been filtered to remove the larger-sized, particulate metal fraction. The term "total" metal refers to metal concentrations determined in unfiltered samples that have been acidified (pH < 2) before analysis. The term "dissolved" metal refers to metal concentrations determined in samples that have been filtered (generally a 0.45- micron pore size) prior to acidification and analysis. Although it is clear that concentrations determined in a procedurally-defined dissolved sample are not accurate measures of dissolved metals, it may be premature to recommend immediate changes to the current procedure (Chapman 1998). Particulate metals can be single atoms or metal complexes adsorbed to or incorporated into silt, clay, algae, detritus, plankton, etc., which can be removed from the test water by filtration through a 0.45 micron filter. A CF value is always less than 1 (except for As which is currently 1.0) and is multiplied by a total criterion to yield a (lower) dissolved criterion. For example, CF values for Cd, Cu, Pb, and Zn, are 0.944, 0.960, 0.791, and 0.978 respectively (USEPA 1997c). The CF values approach 100 percent for several metals because they are ratios determined in laboratory toxicity-test solutions, not in natural waters where relative contributions of waterborne particulate metals are much greater. The California Department of Fish and Game (CDFG 1997) has commented CSPA Comments, Central Valley Water Quality Control Board, City of Davis NPDES Permit Revisions. 1 August 2010, page 9 of 33. that particulate fractions in natural waters in California are often in the range of 80 percent, which would equate to a dissolved-to-total ratio of 0.2. To convert metals criteria, EPA reviewed test data that reported both total and dissolved concentrations in their test waters and also conducted simulations of earlier experiments to determine the dissolved-to-total ratios (USEPA 1992, 1995a, 1997c). In this way, the historical toxicity database could be preserved and a large number of new toxicity tests would not have to be performed. Overall, the CFs proposed in the CTR are based upon roughly 10% of the historical database of toxicity tests. CF values for As and Ni were based on only 1 study each, comprising 11 records. CF values for Cr were based on only 2 studies, while the estimated CF for Pb was based on 3 studies, comprised of only 3 records. Although additional confirmatory studies were performed to develop the CFs, the database available appears to be limited and calls into question the defensibility of the CFs determined for these metals. Ultimately the scientifically most defensible derivation of dissolved metals criteria should be based on reviews of new laboratory investigations because: - 1. The several water quality variables that modulate metal toxicity may not have been properly controlled, measured, reported, or manipulated over ranges that are environmentally realistic and necessary to consider if site-specific criteria are to be proposed (see section on hardness); - 2. It is likely that most toxicity tests measured organism responses in terms of traditional endpoints such as mortality, growth, reproductive output. These may not be sufficient for determining the toxic effects of metals in test waters manipulated to reflect environmental (site) conditions (see section on hardness); - 3. The test waters contained very low contributions from particulate metals to the total metal concentrations. These proportions are not environmentally realistic; and - 4. The present EPA criteria for metals lack meaningful input and modification from metals toxicity research done in the last decade. Points 1 and 2 above are discussed in this final biological opinion in the hardness section dealing with the use of water hardness as a general water quality "surrogate". Point 3 is illustrated by the fact that the CF's proposed in the CTR for several metals are near a value of 1.0. This indicates that the toxicity tests reviewed to derive dissolved-based criteria exposed test organisms in waters that contained very low concentrations of particulate metals. For example, the CF values for Cd, Cu, Pb, and Zn, are 0.944, 0.960, 0.791, and 0.978 respectively (USEPA 1997c), meaning that CSPA Comments, Central Valley Water Quality Control Board, City of Davis NPDES Permit Revisions. 1 August 2010, page 10 of 33. particulate metal percentages were (on average) 5.6%, 4.0%, 20.9%, and 2.2%. These percentages are much lower than found in many natural waters. The California Department of Fish and Game, in their comments to the EPA on the proposed CTR, has stated that particulate fractions in natural waters in California are often in the range of 80 percent (CDFG 1997), which would equate to a dissolved-to-total ratio of 0.2. It is clear that the historical toxicity database does not include studies of the toxic contributions of particulate metals under environmentally realistic conditions. Improved assessments are necessary to develop adequately protective, site specific criteria. The EPA Office of Water Policy and Technical Guidance has noted that particulate metals contribute some toxicity and that there is considerable debate in the scientific community on this point (USEPA 1993a). While the Services agree that dissolved metal forms are generally more toxic, this is not equivalent to saying that particulate metals are non-toxic, do not contribute to organism exposure, or do not require criteria guidance by the EPA. Few studies have carefully manipulated particulate concentrations along with other water constituents, to determine their role(s) in modulating metals toxicity. Erickson et al. (1996) performed such a study while measuring growth and survival endpoints in fish and suggested that copper adsorbed to particulates cannot be considered to be strictly non-toxic. Playle (1997) cautions that it is premature to dismiss particulate-associated metals as biologically unavailable and recommends the expansion of fish gill-metal interaction models to include these forms. The Service is particularly concerned that investigations have not been performed with test waters that contain both high particulate metal concentrations and dissolved concentrations near the CTR-proposed criteria concentrations. Despite a paucity of information about the aquatic toxicity of particulate metals, the CTR proposes that compliance would be based on removing (filtering) these contaminants from a sample prior to analysis. It would be prudent to first conduct short-term and longer term studies, as well as tests that expose organisms other than fish. Particulates may act as a sink for metals, but they may also act as a source. Through chemical, physical, and biological activity these metals can become bioavailable (Moore and Ramamoorthy 1984). Particulate and dissolved metals end up in sediments but are not rendered entirely nontoxic nor completely immobile, thus they still may contribute to the toxicity of the metal in natural waters. Particulate metals have been removed from the regulatory "equation" through at least two methods: the use of a CF to determine the dissolved metal criteria, and the use of a translator to convert back to a total metal concentration for use in waste load CSPA Comments, Central Valley Water Quality Control Board, City of Davis NPDES Permit Revisions. 1 August 2010, page 11 of 33. limit calculations. When waste discharge limits are to be developed and TMDLs are determined for a receiving waterbed, the dissolved criterion must be "translated" back to a total concentration because TMDLs will continue to be based on total metals. EPA provides three methods in which the translation of dissolved criteria to field measurements of total metal may be implemented. These three methods may potentially result in greatly different outcomes relative to particulate metal loading. These methods are: - 1. Determination of a site specific translator by measuring site specific ratios of dissolved metal to total metal and then dividing the dissolved criterion by this translator. As an example: a site specific ratio of 0.4 (40% of the metal in the site water is dissolved) would result in a 2.5 fold increase in the discharge of total metal. The higher the fraction of particulate metal in the site water the greater the allowable discharge of total metal. See the discussion and Table 9 below. This is EPA's preferred method. - 2. Theoretical partitioning relationship. This method is based on a partitioning coefficient determined empirically for each metal and when available the concentration of total suspended solids in the site specific receiving water. - 3. The translator for a metal is assumed to be equivalent to the criteria guidance conversion factor for that metal (use the same value to convert from total to dissolved and back again). Since translators are needed to calculate discharge limits they become important in determining the total metals allowed to be discharged (see also loading discussion for individual metals below. In the economic analysis performed by the EPA and evaluated by the
State Board (SWRCB 1997), it was estimated that translators based on site-specific data will decrease dischargers costs of implementing the new CTR criteria by 50 percent. This cost savings is "directly related to the less stringent effluent limitations that result from the use of site-specific translators." This implies a strong economic incentive for dischargers to reduce costs by developing site-specific translators and ultimately being allowed to discharge more total metals. This conclusion regarding the impact of site specific translators is supported by documents received from EPA (USEPA 1997d). EPA performed a sensitivity analysis on the effect of the site specific translator, which relies on determining the ratio of metal in water after filtration to metal in water before filtration in downstream waters. EPA's analysis indicated that use of a site-specific translators to calculate criteria would result in greater releases of toxic- CSPA Comments, Central Valley Water Quality Control Board, City of Davis NPDES Permit Revisions. 1 August 2010, page 12 of 33. weighted metals loads above the option where the Cfs are used as the translators. The potential difference was estimated to be between 0.4 million and 2.24 million "toxic weighted" pounds of metals discharged to California waterways. The Services believe that the current use of conversion factors and site specific translators in formula-based metal criteria are not sufficiently protective of threatened and endangered aquatic species because: - 1. Particulate metals have been removed from the regulatory equation even though chemical, physical, and biological activity can subsequently cause these particulate metals to become bioavailable; - 2. The criteria are developed using toxicity tests that expose test organisms to metal concentrations with very low contributions from particulate metals; - 3. Toxicity tests do not assess whether the toxic contributions of particulate metals are negligible when particulate concentrations are great and dissolved concentrations are at or near criteria levels; - 4. This method has the potential to significantly increase the discharge of total metal loads into the environment even though dissolved metal criteria are being met by a discharger; and - 5. The premise ignores the fact that water is more than a chemical medium; it also physically delivers metals to the sediments." The Services believe that the CTR proposed formula-based metal criteria is not protective of threatened or endangered aquatic species because total metal discharges will likely increase and the criteria development methods do not adequately consider the environmental fate, transport, and transformation of metals in natural environments. The US Fish and Wildlife Service (Service) and the National Marine Fisheries Service (NMFS) biological opinion requires that whenever a threatened or endangered species is present downstream from a discharge where a State developed translator will be used, EPA will work with the permitting authority to ensure that appropriate information, which may be needed to calculate the translator in accordance with the applicable guidance, will be obtained and used. Appropriate information includes: CSPA Comments, Central Valley Water Quality Control Board, City of Davis NPDES Permit Revisions. 1 August 2010, page 13 of 33. - 1. Ambient and effluent acute and chronic toxicity data; - 2. Bioassessment data; and/or - 3. An analysis of the potential effect s of the metals using sediment guidelines, biocriteria and residue-based criteria for shellfish to the extent such guidelines and criteria exist and are applicable to the receiving water body. EPA, in cooperation with the Services, will review these discharges and associated monitoring data and permit limits, to determine the potential for the discharge to impact federally listed species and/or critical habitats. If discharges are identified that have the potential to adversely affect federally listed species and/or critical habitat, EPA will work with the Services and the State of California in accordance with procedures agreed to by the Agencies in the draft MOA published in the Federal Register at 64 FR 2755 (January 15, 1999) or any modifications to those procedures agreed to in a finalized MOA." The proposed Permit states that: "During the study, the Discharger collected water quality data twice a week for a 5-week period during low receiving water conditions, which is recommended by USEPA's guidance. Samples were collected of the effluent at Discharge 001 and in Willow Slough Bypass approximately 3 miles downstream of Discharge 001. Metals translators were developed for copper, nickel, and lead in accordance with the SIP and USEPA's guidance..." First, the proposed Permit does not specify what EPA Guidance was used in development of the translators. EPA's June 1996 The Metals Translator: Guidance For Calculating A Total Recoverable Permit Limit From A Dissolved Criterion recommends that samples would normally be collected during low flow conditions when where TSS concentrations are fairly consistent. EPA's recommendation to collect samples during low flow conditions relates to "worst case" conditions in most streams, but not necessarily the receiving waters in Davis. As is stated in the Fact Sheet, hardness in Davis' receiving streams vary greatly depending on flood water flows. The lowest hardness values are actually observed during high flows, not low, corresponding to the worst case for the toxicity of metals. Sampling exclusively during the low flow conditions at Davis does not likely capture the worst case partitioning of metals and is likely inappropriate. The translator study used at Davis is likely significantly flawed. 4. The proposed Permit fails to utilize the latest EPA recommended criteria for copper and instead utilized an outdated water quality standard and water effects ration in developing and effluent limitation for copper contrary to Section 122.44(d) of 40 CFR which requires that permits include water quality-based effluent limitations (WQBELs) to attain and maintain applicable numeric and narrative water quality criteria to protect the beneficial uses of the receiving water. CSPA Comments, Central Valley Water Quality Control Board, City of Davis NPDES Permit Revisions. 1 August 2010, page 14 of 33. EPA has issued revised national recommended freshwater aquatic life criteria for copper (*Aquatic Life Ambient Freshwater Quality Criteria—Copper 2007 Revision*). In adopting the copper criteria EPA stated that: "Copper is an abundant naturally occurring trace element found in the earth's crust that is also found in surface waters. Copper is a micronutrient at low concentrations and is essential to virtually all plants and animals. At higher concentrations copper can become toxic to aquatic life. Mining, leather and leather products, fabricated metal products, and electric equipment are a few of the industries with copper-bearing discharges that contribute to manmade discharges of copper into surface waters. Municipal effluents may also contribute additional copper loadings to surface waters. Since EPA published the hardness-based recommendation for copper criteria in 1984, new data have become available on copper toxicity and its effects on aquatic life. The Biotic Ligand Model (BLM) – a metal bioavailability model that uses receiving water body characteristics to develop site-specific water quality criteria – utilizes the best available science and serves as the basis for the new national recommended criteria. The BLM requires ten input parameters to calculate a freshwater copper criterion (a saltwater BLM is not yet available): temperature, pH, dissolved organic carbon (DOC), calcium, magnesium, sodium, potassium, sulfate, chloride, and alkalinity. The BLM is used to derive the criteria rather than as a post-derivation adjustment as was the case with the hardness-based criteria. This allows the BLM-based criteria to be customized to the particular water under consideration. BLM-based criteria can be more stringent than the current hardness-based copper criteria and in certain cases the current hardness-based copper criteria may be overly stringent for particular water bodies. We expect that application of this model will result in more appropriate criteria and eliminate the need for costly, time-consuming site-specific modifications using the water effect ratio." On March 24, 2000 the US Fish and Wildlife Service (Service) and the National Marine Fisheries Service (NMFS) issued a biological opinion on the effects of the final promulgation of the CTR on listed species and critical habitats in California in accordance with section 7 of the Endangered Species Act of 1973, as amended (16 USC 1531 et seq.; Act). The biological opinion was issued to the U.S. Environmental Protection Agency, Region 9, with regard to the "Final Rule for the Promulgation of Water Quality Standards: Establishment of Numeric Criteria for Priority Toxic Pollutants for the State of California" (CTR)". The document represented the Services' final biological opinion on the effects of the final promulgation of the CTR on listed species and critical habitats in California in accordance with section 7 of the Endangered Species Act of 1973, as amended (16 USC 1531 et seq.; Act). CSPA Comments, Central Valley Water Quality Control Board, City of Davis NPDES Permit Revisions. 1 August 2010, page 15 of 33. On Page 13 (C) and repeated on pages 216 and 232 of the biological opinion it is required that: "By June of 2003, EPA, in cooperation with the Services, will develop a revised criteria calculation model based on best available science for deriving aquatic life criteria on the basis of hardness (calcium and magnesium), pH, alkalinity, and dissolved organic carbon (DOC) for metals." The biological opinion contains the following discussion, beginning on page 205, regarding the use of
hardness in developing limitations for toxic metals: "The CTR should more clearly identify what is actually to be measured in a site water to determine a site-specific hardness value. Is the measure of hardness referred to in the CTR equations a measure of the water hardness due to calcium and magnesium ions only? If hardness computations were specified to be derived from data obtained in site water calcium and magnesium determinations alone, confusion could be avoided and more accurate results obtained (APHA 1985). Site hardness values would thus not include contributions from other multivalent cations (e.g., iron, aluminum, manganese), would not rise above calcium + magnesium hardness values, or result in greater-than-intended site criteria when used in formulas. In this Biological opinion, what the Services refer to as hardness is the water hardness due to calcium + magnesium ions only. The CTR should clearly state that to obtain a site hardness value, samples should be collected upstream of the effluent source(s). Clearly stating this requirement in the CTR would avoid the computation of greater-than-intended site criteria in cases where samples were collected downstream of effluents that raise ambient hardness, but not other important water qualities that affect metal toxicity (e.g., pH, alkalinity, dissolved organic carbon, calcium, sodium, chloride, etc.). Clearly, it is inappropriate to use downstream site water quality variables for input into criteria formulas because they may be greatly altered by the effluent under regulation. Alterations in receiving water chemistry by a discharger (e.g., abrupt elevation of hardness, changes in pH, exhaustion of alkalinity, abrupt increases in organic matter etc.) should not result, through application of hardness in criteria formulas, in increased allowable discharges of toxic metals. If the use of downstream site water quality variables were allowed, discharges that alter the existing, naturally-occurring water composition would be encouraged rather than discouraged. Discharges should not change water chemistry even if the alterations do not result in toxicity, because the aquatic communities present in a water body may prefer the unaltered environment over the discharge-affected environment. Biological criteria may be necessary to detect adverse ecological effects downstream of discharges, whether or not toxicity is expressed. CSPA Comments, Central Valley Water Quality Control Board, City of Davis NPDES Permit Revisions. 1 August 2010, page 16 of 33. The CTR proposes criteria formulas that use site water hardness as the only input variable. In contrast, over twenty years ago Howarth and Sprague (1978) cautioned against a broad use of water hardness as a "shorthand" for water qualities that affect copper toxicity. In that study, they observed a clear effect of pH in addition to hardness. Since that time, several studies of the toxicity of metals in test waters of various compositions have been performed and the results do not confer a singular role to hardness in ameliorating metals toxicity. In recognition of this fact, most current studies carefully vary test water characteristics like pH, calcium, alkalinity, dissolved organic carbon, chloride, sodium, suspended solid s, and others while observing the responses of test organisms. It is likely that understanding metal toxicity in waters of various chemical makeups is not possible without the use of a geochemical model that is more elaborate than a regression formula. It may also be that simple toxicity tests (using mortality, growth, or reproductive endpoints) are not capable of discriminating the role of hardness or other water chemistry characteristics in modulating metals toxicity (Erickson et al. 1996). Gill surface interaction models have provided a useful framework for the study of acute metals toxicity in fish (Pagenkopf 1983; Playle et al. 1992; Playle et al. 1993a; Playle et al. 1993b; Janes and Playle 1995; Playle 1998), as have studies that observe physiological (e.g. ion fluxes) or biochemical (e.g. enzyme inhibition) responses (Lauren and McDonald 1986; Lauren and McDonald 1987a; Lauren and McDonald 1987b; Reid and McDonald 1988; Verbost et al. 1989; Bury et al. 1999a; Bury et al. 1999b). Even the earliest gill models accounted for the effects of pH on metal speciation and the effects of alkalinity on inorganic complexation, in addition to the competitive effects due to hardness ions (Pagenkopf 1983). Current gill models make use of sophisticated, computer-based, geochemical programs to more accurately account for modulating effects in waters of different chemical makeup (Playle 1998). These programs have aided in the interpretation of physiological or biochemical responses in fish and in investigations that combine their measurement with gill metal burdens and traditional toxicity endpoints. The Services recognize and acknowledge that hardness of water and the hardness acclimation status of a fish will modify toxicity and toxic response. However the use of hardness alone as a universal surrogate for all water quality parameters that may modify toxicity, while perhaps convenient, will clearly leave gaps in protection when hardness does not correlate with other water quality parameters such as DOC, pH, Cl- or alkalinity and will not provide the combination of comprehensive protection and site specificity that a multivariate water quality model could provide. In our review of the best available scientific literature the Services have found no conclusive evidence that water hardness, by itself, in either laboratory or natural water, is a consistent, accurate predictor of the aquatic toxicity of all metals in all conditions. Hardness as a predictor of copper toxicity: Lauren and McDonald (1986) varied pH. alkalinity, and hardness independently at a constant sodium ion concentration, while measuring net sodium loss and mortality in rainbow trout exposed to copper. Sodium loss was an endpoint investigated because mechanisms of short-term copper toxicity in fish are related to disruption of gill ionoregulatory function. Their results indicated that alkalinity was an important factor reducing copper toxicity, most notably in natural waters of low calcium hardness and alkalinity. Meador (1991) found that both pH and dissolved organic carbon were important in controlling copper toxicity to Daphnia magna. Welsh et al. (1993) demonstrated the importance of dissolved organic carbon in affecting the toxicity of copper to fathead minnows and suggested that water quality criteria be reviewed to consider the toxicity of copper in waters of low alkalinity, moderately acidic pH, and low dissolved organic carbon concentrations. Applications of gill models to copper binding consider complexation by dissolved organic carbon, speciation and competitive effects of pH, and competition by calcium ions, not merely water hardness (Playle et al. 1992; Playle et al. 1993a; Playle et al. 1993b). Erickson et al. (1996) varied several test water qualities independently and found that pH, hardness, sodium, dissolved organic matter, and suspended solids have important roles in determining copper toxicity. They also suggested that it may difficult to sort out the effects of hardness based on simple toxicity experiments. It is clear that these studies question the use of site calcium + magnesium hardness only as input to a formula to derive a criterion for copper because pH, alkalinity, and dissolved organic carbon concentrations are key water quality variables that also modulate toxicity. In waters of moderately acidic pH, low alkalinity, and low dissolved organic carbon, the use of hardness regressions may be most inaccurate. Also, it is not clear that the dissolved organic carbon in most or all waters render metals unavailable. This is because dissolved organic carbon from different sources may vary in both binding capacity and stability (Playle 1998)." As was required in the biological opinion, EPA has updated the water quality criteria for copper as cited above. Failure to utilize the updated criteria for copper in the proposed Permit conflicts with the requirements of Section 122.44(d) of 40 CFR which requires that permits include water quality-based effluent limitations (WQBELs) to attain and maintain applicable numeric and narrative water quality criteria to protect the beneficial uses of the receiving water. Both EPA, in adopting the new criteria for copper, and the "Services" in issuing their biological opinion cite that the use of WERs and the old hardness based standard for copper is likely not protective of the aquatic life beneficial use. 5. The proposed Permit misquotes and misapplies a technical report in developing hardness based effluent limitations for metals; therefore, the effluent limitations CSPA Comments, Central Valley Water Quality Control Board, City of Davis NPDES Permit Revisions. 1 August 2010, page 18 of 33. ### developed utilizing this procedure are not protective of water quality and the beneficial uses of the receiving stream as required by 40 CFR 122.44. The proposed Permit cites a technical report (page F-19, footnote No. 4, Emerick, R.W.; Borroum, Y.; & Pedri, J.E., 2006. California and National Toxics Rule Implementation and Development of Protective Hardness Based Metal Effluent Limitations. WEFTEC, Chicago, Ill.) as justification for utilizing a hardness other than the upstream ambient hardness in equations for developing effluent limitations for metals. The cited report states that: "PROPOSED IMPLEMENTATION, It is proposed to develop water quality criteria for use in conducting "reasonable potential" analyses for the assignment of effluent limitations based on the following methodology. It has been demonstrated that the following methodology for setting fixed effluent limitations for hardness dependent metals will always be protective under all flow and mixing conditions (i.e., is
independent of 1Q10 and 7Q10 design flows). In situations where maximum receiving water contaminant concentrations are less than water quality objectives or if effluent will never make up 100 percent of the stream flow, these same methodologies can be modified easily to set protective, fixed effluent limitations based on the maximum receiving water contaminant concentration or maximum percentage of effluent that will be present in the receiving water." (Emphasis added) In this specific case, for the City of Davis, the upstream maximum contaminant level is minimally characterized by a statistically insignificant data set for metals. The Yolo Bypass is well documented at having extremely varied water quality conditions since it was constructed to receive flood waters from the Sacramento River. The instream data is not sufficient to confirm the requirement that the receiving water contaminant levels are always below the applicable water quality standard. This is also confirmed by the proposed Permit requirement, on page 30, that: "h. Priority Pollutant Metals Study. For a one-year period, beginning no later than 31 January 2011, the Discharger shall conduct monthly upstream receiving water monitoring for hardness-dependant priority pollutant metals (i.e., cadmium, chromium III, copper, lead, nickel, silver, and zinc), hardness, alkalinity, EC, pH, and TSS at RSW-001 and RSW-003. The Discharger shall submit a report summarizing the monitoring results no later than 3 months following the final monthly monitoring event. If there is no flow at RSW-001 or RSW-003 monitoring is not required and the report shall state that there was no flow. In assessing whether the receiving stream makes up 100% of the stream flow, the Page F-27 of the proposed Permit states that: "c. Assimilative Capacity/Mixing Zone, The State Water Resources Control Board Water Quality Order (WQO) No. 2002-0015, states that the use of the harmonic mean to determine flow rates is inappropriate for ephemeral streams where there is no consistent background dilution. The impact of considering a receiving stream to be ephemeral is that all limitations are "end of pipe" without any benefit of dilution. Since the receiving streams' CSPA Comments, Central Valley Water Quality Control Board, City of Davis NPDES Permit Revisions. 1 August 2010, page 19 of 33. flows are, at times, immeasurably small to nonexistent, this Order contains "end of pipe" limitations, with no dilution credits." The proposed Permit conditions do not meet the requirements of the cited technical report for developing protective effluent limitations for hardness dependant metals. 6. The proposed Permit establishes Effluent Limitations for metals based on the hardness of the effluent as opposed to the ambient upstream receiving water hardness as required by Federal Regulations, the California Toxics Rule (CTR, 40 CFR 131.38(c)(4)). The State Board Order (WQ 2008-0008 corrected) remanded the permit back to the Regional Board for revision as follows: "2. Revise the Fact Sheet to include a discussion of the appropriate hardness to use to protect from acute toxicity impacts (which can occur in short-term periods including storm events) in the receiving waters. The Fact Sheet should also state that the lowest valid upstream receiving water hardness values of 78 mg/l for Willow Slough Bypass and 85 mg/l for Conaway Ranch Toe Drain should be used to determine reasonable potential for the effluent to exceed the hardness-dependent metal CTR criteria, unless additional evidence and analysis, consistent with this Order, demonstrates that different hardness values are appropriate to use and are fully protective of water quality." Despite the State Board's Order the proposed Permit regurgitates the same hardness use for developing metals limitations as was in the original permit. As we cite immediately above, the proposed Permit and Regional Board staff does not even follow their cited methodology (Emerick) for use of the effluent or downstream hardness. The proposed Permit ignores the State Board Order, ignores the Implementation Recommendations of their cited methodology, ignores the regulatory requirement to use the "ambient" upstream hardness, ignores the recommendations of the Fish and Wildlife and National Marine Fisheries Agencies biological opinion, ignores US EPA's updated criteria for copper and ignores good science in developing limitations for hardness dependant metals. Federal Regulation 40 CFR 131.38(c)(4) states that: "For purposes of calculating freshwater aquatic life criteria for metals from the equations in paragraph (b)(2) of this section, for waters with a hardness of 400 mg/l or less as calcium carbonate, the actual ambient hardness of the surface water shall be used in those equations." (Emphasis added). The proposed Permit states that the effluent hardness and the downstream hardness were used to calculate Effluent Limitations for metals. The definition of ambient is "in the surrounding area", "encompassing on all sides". It has been the Region 5, Sacramento, NPDES Section, in referring to Basin Plan CSPA Comments, Central Valley Water Quality Control Board, City of Davis NPDES Permit Revisions. 1 August 2010, page 20 of 33. objectives for temperature, to define *ambient* as meaning upstream. It is reasonable to assume, after considering the definition of ambient, that EPA is referring to the hardness of the receiving stream before it is potentially impacted by an effluent discharge. It is also reasonable to make this assumption based on past interpretations and since EPA, in permit writers' guidance and other reference documents, generally assumes receiving streams have dilution, which would ultimately "encompass" the discharge. Ambient conditions are in-stream conditions unimpacted by the discharge. The Federal Register, Volume 65, No. 97/Thursday, May 18th 2000 (31692), adopting the California Toxics Rule in confirming that the ambient hardness is the upstream hardness, absent the wastewater discharge, states that: "A hardness equation is most accurate when the relationship between hardness and the other important inorganic constituents, notably alkalinity and pH, are nearly identical in all of the dilution waters used in the toxicity tests and in the surface waters to which the equation is to be applied. If an effluent raises hardness but not alkalinity and/or pH, using the lower hardness of the downstream hardness might provide a lower level of protection than intended by the 1985 guidelines. If it appears that an effluent causes hardness to be inconsistent with alkalinity and/or pH the intended level of protection will usually be maintained or exceeded if either (1) data are available to demonstrate that alkalinity and/or pH do not affect the toxicity of the metal, or (2) the hardness used in the hardness equation is the hardness of upstream water that does not include the effluent. The level of protection intended by the 1985 guidelines can also be provided by using the WER procedure." On March 24, 2000 the US Fish and Wildlife Service (Service) and the National Marine Fisheries Service (NMFS) issued a biological opinion on the effects of the final promulgation of the CTR on listed species and critical habitats in California in accordance with section 7 of the Endangered Species Act of 1973, as amended (16 USC 1531 et seq.; Act). The biological opinion was issued to the U.S. Environmental Protection Agency, Region 9, with regard to the "Final Rule for the Promulgation of Water Quality Standards: Establishment of Numeric Criteria for Priority Toxic Pollutants for the State of California" (CTR)". The document represented the Services' final biological opinion on the effects of the final promulgation of the CTR on listed species and critical habitats in California in accordance with section 7 of the Endangered Species Act of 1973, as amended (16 USC 1531 et seq.; Act). The biological opinion contains the following discussion, beginning on page 205, regarding the use of hardness in developing limitations for toxic metals: "The CTR should more clearly identify what is actually to be measured in a site water to determine a site-specific hardness value. Is the measure of hardness referred to in the CTR equations a measure of the water hardness due to calcium and magnesium ions only? If hardness computations were specified to be derived from data obtained in site CSPA Comments, Central Valley Water Quality Control Board, City of Davis NPDES Permit Revisions. 1 August 2010, page 21 of 33. water calcium and magnesium determinations alone, confusion could be avoided and more accurate results obtained (APHA 1985). Site hardness values would thus not include contributions from other multivalent cations (e.g., iron, aluminum, manganese), would not rise above calcium + magnesium hardness values, or result in greater-than-intended site criteria when used in formulas. In this Biological opinion, what the Services refer to as hardness is the water hardness due to calcium + magnesium ions only. The CTR should clearly state that to obtain a site hardness value, samples should be collected upstream of the effluent source(s). Clearly stating this requirement in the CTR would avoid the computation of greater-than-intended site criteria in cases where samples were collected downstream of effluents that raise ambient hardness, but not other important water qualities that affect metal toxicity (e.g., pH, alkalinity, dissolved organic carbon, calcium, sodium, chloride, etc.). Clearly, it is inappropriate to use downstream site water quality variables for input into criteria formulas because they may be greatly altered by the effluent under regulation. Alterations in receiving water chemistry by a discharger (e.g., abrupt elevation of hardness, changes in pH, exhaustion of alkalinity, abrupt increases in organic matter etc.) should not result, through application of hardness in criteria formulas,
in increased allowable discharges of toxic metals. If the use of downstream site water quality variables were allowed, discharges that alter the existing, naturally-occurring water composition would be encouraged rather than discouraged. Discharges should not change water chemistry even if the alterations do not result in toxicity, because the aquatic communities present in a water body may prefer the unaltered environment over the discharge-affected environment. Biological criteria may be necessary to detect adverse ecological effects downstream of discharges, whether or not toxicity is expressed. The CTR proposes criteria formulas that use site water hardness as the only input variable. In contrast, over twenty years ago Howarth and Sprague (1978) cautioned against a broad use of water hardness as a "shorthand" for water qualities that affect copper toxicity. In that study, they observed a clear effect of pH in addition to hardness. Since that time, several studies of the toxicity of metals in test waters of various compositions have been performed and the results do not confer a singular role to hardness in ameliorating metals toxicity. In recognition of this fact, most current studies carefully vary test water characteristics like pH, calcium, alkalinity, dissolved organic carbon, chloride, sodium, suspended solid s, and others while observing the responses of test organisms. It is likely that understanding metal toxicity in waters of various chemical makeups is not possible without the use of a geochemical model that is more elaborate than a regression formula. It may also be that simple toxicity tests (using mortality, growth, or reproductive endpoints) are not capable of discriminating the role of hardness or other water chemistry characteristics in modulating metals toxicity (Erickson *et al.* CSPA Comments, Central Valley Water Quality Control Board, City of Davis NPDES Permit Revisions. 1 August 2010, page 22 of 33. 1996). Gill surface interaction models have provided a useful framework for the study of acute metals toxicity in fish (Pagenkopf 1983; Playle *et al.* 1992; Playle *et al.* 1993a; Playle *et al.* 1993b; Janes and Playle 1995; Playle 1998), as have studies that observe physiological (e.g. ion fluxes) or biochemical (e.g. enzyme inhibition) responses (Lauren and McDonald 1986; Lauren and McDonald 1987a; Lauren and McDonald 1987b; Reid and McDonald 1988; Verbost *et al.* 1989; Bury *et al.* 1999a; Bury *et al.* 1999b). Even the earliest gill models accounted for the effects of pH on metal speciation and the effects of alkalinity on inorganic complexation, in addition to the competitive effects due to hardness ions (Pagenkopf 1983). Current gill models make use of sophisticated, computer-based, geochemical programs to more accurately account for modulating effects in waters of different chemical makeup (Playle 1998). These programs have aided in the interpretation of physiological or biochemical responses in fish and i n investigations that combine their measurement with gill metal burdens and traditional toxicity endpoints. The Services recognize and acknowledge that hardness of water and the hardness acclimation status of a fish will modify toxicity and toxic response. However the use of hardness alone as a universal surrogate for all water quality parameters that may modify toxicity, while perhaps convenient, will clearly leave gaps in protection when hardness does not correlate with other water quality parameters such as DOC, pH, Cl- or alkalinity and will not provide the combination of comprehensive protection and site specificity that a multivariate water quality model could provide. In our review of the best available scientific literature the Services have found no conclusive evidence that water hardness, by itself, in either laboratory or natural water, is a consistent, accurate predictor of the aquatic toxicity of all metals in all conditions. SWRCB prescidential Order No. WQ 2008-0008 (Corrected) regarding a petition for consideration of the City of Davis' NPDES Permit states and concludes that: "Based on the current record, it would be more appropriate to use the lowest reliable upstream receiving water hardness values of 78 mg/l for Willows Slough Bypass and 85 mg/l for Conaway Ranch Toe Drain for protection from acute toxicity impacts, regardless of when the samples were taken or whether they were influenced by storm events. Because high flow conditions may deviate from the design flow conditions for selection of hardness as specified in the CTR, it may not be necessary, in some circumstances, to select the lowest hardness values from high flow or storm event conditions. Regardless of the hardness used, the resulting limits must always be protective of water quality criteria under all flow conditions." "Conclusion: The Central Valley Water Board was justified in using upstream receiving water hardness values rather than effluent hardness values. However, for protection from CSPA Comments, Central Valley Water Quality Control Board, City of Davis NPDES Permit Revisions. 1 August 2010, page 23 of 33. acute toxicity impacts in the receiving waters, which can occur in short durations even during storm events, in this case, based on the existing record, the Central Valley Water Board should have used the lowest valid upstream receiving water hardness values of 78 mg/l for Willow Slough Bypass and 85 mg/l for Conaway Ranch Toe Drain. Effluent limitations must protect beneficial uses considering reasonable, worst-case conditions. We recognize that this approach does not necessarily agree with conclusions in other guidance stating that low flow conditions are the "worst-case" conditions. However, nothing in this Order is intended to suggest that low flows are inappropriate for determining the reasonable, worst-case conditions in other contexts." (Emphasis added) The result of using a higher effluent or downstream hardness value is that metals are toxic at higher concentrations, discharges have less reasonable potential to exceed water quality standards and the resulting Permits have fewer Effluent Limitations. The most typical wastewater discharge situation is where the receiving water hardness is lower than the effluent hardness. Metals are more toxic in lower hardness water. For example; if the receiving water hardness is 25 mg/l and the effluent hardness is 50 mg/l a corresponding chronic discharge limitation for copper based on the different hardness's would be 2.9 ug/l and 5.2 ug/l. respectively. Obviously, the limitation based on the ambient receiving water hardness is more restrictive. The Regional Board's arguments with regard to effluent and/or downstream receiving water hardness can only be made if in-stream mixing is considered. Mixing zones may be granted in accordance with extensive requirements contained in the SIP and the Basin Plan to establish Effluent Limitations. Mixing zones cannot be considered in conducting a reasonable potential analysis to determine whether a constituent will exceed a water quality standard or objective. The Regional Board's approach in using the effluent or downstream hardness to conduct a reasonable potential analysis and consequently establish effluent limitations can only be utilized if mixing is considered; otherwise the ambient (upstream) hardness results in significantly more restrictive limitations. A mixing zone allowance has not been discussed with regard to this issue and therefore does not comply with the SIP. The Regional Board cited the State Board's Water Quality Order (WQO)(No. 2008 0008) for the City of Davis as allowing complete discretion in utilizing the downstream hardness in deriving limits for toxic metals. WQO 2008 0008 in requiring the Regional Board to modify their permit states: "Revise the Fact Sheet to include a discussion of the appropriate hardness to use to protect from acute toxicity impacts (which can occur in short-term periods including storm events) in the receiving waters. The Fact Sheet should also state that the lowest valid upstream receiving water hardness values of 78 mg/l for Willow Slough Bypass and 85 mg/l for Conaway Ranch Toe Drain should be used to determine reasonable potential for the effluent to exceed the hardness-dependent metal CTR criteria, unless additional evidence and analysis, consistent with this Order, demonstrates that different hardness values are appropriate to use and are fully protective of water quality." The Regional Board did not use the lowest observed upstream hardness as CSPA Comments, Central Valley Water Quality Control Board, City of Davis NPDES Permit Revisions. 1 August 2010, page 24 of 33. required in WQO 2008 0008. The Regional Board has not provided additional evidence and analysis demonstrating that different hardness is fully protective of beneficial uses. To the contrary, the Regional Board does not address the March 24, 2000 the US Fish and Wildlife Service (Service) and the National Marine Fisheries Service (NMFS) CTR Biological Opinion cited above stating that the use of hardness alone is not protective of beneficial uses and recommending the sole use of the ambient upstream hardness in developing limits for toxic metals. The issue is that the Regional Board fails to comply with the regulatory requirement to use the ambient instream hardness for limiting hardness dependant metals under the CTR. Use of the effluent or the effluent receiving water mix simply does not meet the definition of the actual ambient hardness of the receiving stream. The proposed Permit failure to include Effluent Limitations for metals based on the actual ambient hardness of the surface water is contrary to the cited Federal Regulation and must be amended to comply with the cited regulatory requirement. 7. The proposed Permit does not contain enforceable Effluent Limitations for chronic toxicity and therefore does not comply with the Basin Plan, Federal Regulations, at 40 CFR 122.44
(d)(1)(i) and the Policy for Implementation of Toxics Standards for Inland Surface Waters, Enclosed Bays, and Estuaries of California (SIP). The proposed Permit has been modified as required by the State Board remand to include a narrative limitation for chronic toxicity. The proposed Permit however also includes the following: "I. Chronic Whole Effluent Toxicity Effluent Limitation. Compliance with the accelerated monitoring and TRE/TIE provisions of Provision VI.C.2.a shall constitute compliance with effluent limitations IV.A.1.g and IV.A.2.g for chronic whole effluent toxicity." The SIP, Section 4, Toxicity Control Provisions, Water Quality-Based Toxicity Control, states that: "A chronic toxicity effluent limitation is required in permits for all dischargers that will cause, have a reasonable potential to cause, or contribute to chronic toxicity in receiving waters." The SIP is a state *Policy* and CWC Sections 13146 and 13247 require that the Board in carrying out activities which affect water quality shall comply with state policy for water quality control unless otherwise directed by statute, in which case they shall indicate to the State Board in writing their authority for not complying with such policy. Federal regulations, at 40 CFR 122.44 (d)(1)(i), require that limitations must control all pollutants or pollutant parameters which the Director determines are or may be discharged at a level which will cause, or contribute to an excursion above any State water quality standard, including state narrative criteria for water quality. There has been no argument that domestic sewage contains toxic substances and presents a reasonable potential to cause toxicity if not CSPA Comments, Central Valley Water Quality Control Board, City of Davis NPDES Permit Revisions. 1 August 2010, page 25 of 33. properly treated and discharged. The Water Quality Control Plan for the Sacramento/ San Joaquin River Basins (Basin Plan), Water Quality Objectives (Page III-8.00) for Toxicity is a narrative criteria which states that all waters shall be maintained free of toxic substances in concentrations that produce detrimental physiological responses in human, plant, animal, or aquatic life. The Proposed Permit contains a narrative Effluent Limitation prohibiting the discharge of chronically toxic substances: however a *Compliance Determination* has been added to the proposed Permit: "Compliance with the accelerated monitoring and TRE/TIE provisions of Provision VI.C.2.a shall constitute compliance with effluent limitations contained in sections IV.A.1.d and IV.B.1.d of this Order for chronic whole effluent toxicity ". The *Compliance Determination* nullifies the Effluent Limitation and makes toxic discharges unenforceable. The Basin Plan narrative Toxicity Objective states that: "All waters shall be maintained free of toxic substances in concentrations that produce detrimental physiological responses in human, plant, or aquatic life. This objective applies regardless of whether the toxicity is caused by a single substance or the interactive effect of multiple substances. Compliance with this objective will be determined by analyses of indicator organisms, species diversity, population density, growth anomalies, and biotoxicity tests of appropriate duration or other methods as specified by the Regional Board." According to the Basin Plan toxicity sampling is required to determine compliance with the requirement that all waters be maintained free of toxic substances. Sampling does not equate with or ensure that waters are free of toxic substances. The Tentative Permit requires the Discharger to conduct an investigation of the possible sources of toxicity if a threshold is exceeded. This language is not a limitation and essentially eviscerates the Regional Board's authority, and the authority granted to third parties under the Clean Water Act, to find the Discharger in violation for discharging chronically toxic constituents. An enforceable effluent limitation for chronic toxicity must be included in the Order. ## 8. The proposed Permit does not contain an Effluent Limitation for electrical conductivity (EC) in violation of Federal Regulations 40 CFR 122.44. Federal Regulations, 40 CFR 122.44(d), requires that limits must be included in permits where pollutants will cause, have reasonable potential to cause, or contribute to an exceedance of the State's water quality standards. After reviewing the City of Davis permit the State Board Order (WQ 2008-0008 corrected) contained the following requirement regarding electrical conductivity: "8. Review the City of Woodland's EC site-specific study to determine whether it provides an appropriate basis for calculating a final EC effluent limitation for the discharge regulated by the Permit, and if so, amend the Permit as necessary to make the CSPA Comments, Central Valley Water Quality Control Board, City of Davis NPDES Permit Revisions. 1 August 2010, page 26 of 33. appropriate changes for EC, including the addition of an effluent limitation as appropriate, based on that review. If the City of Woodland study is not used, findings justifying that decision must be made. This portion of the Order may take additional time to complete and may be completed after the revisions required by in sections 1-7 are completed." Page F-47 of the proposed Permit states that: "State Water Board Order No. WQO 2008-0008 (City of Davis) concluded that the EC interim limitation was appropriate, but remanded the permit to the Regional Water Board to allow the Discharger use the results from the City of Woodland's EC site-specific study, in lieu of conducting a new study. The study provision has been modified to make this change." The proposed Permit intentionally misinterprets the State Board Order as not requiring modification to include a final effluent limitation for EC based on the City of Woodland's site specific study for EC. Federal Regulations, 40 CFR 122.44 (d)(i), requires that; "Limitations must control all pollutants or pollutant parameters (either conventional, nonconventional, or toxic pollutants) which the Director determines are or may be discharged at a level which will cause, have the reasonable potential to cause, or contribute to an excursion above any State water quality standard, including State narrative criteria for water quality." The Water Quality Control Plan (Basin Plan) for the Central Valley Region, Water Quality Objectives, page III-3.00, contains a Chemical Constituents Objective that includes Title 22 Drinking Water Maximum Contaminant Levels (MCLs) by reference. The Title 22 MCLs for EC are 900 µmhos/cm (recommended level), 1,600 µmhos/cm (upper level) and 2,200 µmhos/cm (short term maximum). The Basin Plan states, on Page III-3.00 Chemical Constituents, that "Waters shall not contain constituents in concentrations that adversely affect beneficial uses." The Basin Plan's "Policy for Application of Water Quality Objectives" provides that in implementing narrative water quality objectives, the Regional Board will consider numerical criteria and guidelines developed by other agencies and organizations. This application of the Basin Plan is consistent with Federal Regulations, 40CFR 122.44(d). For EC, Ayers R.S. and D.W. Westcott, Water Quality for Agriculture, Food and Agriculture Organization of the United Nations – Irrigation and Drainage Paper No. 29, Rev. 1, Rome (1985), levels above 700 µmhos/cm will reduce crop yield for sensitive plants. The University of California, Davis Campus, Agricultural Extension Service, published a paper, dated 7 January 1974, stating that there will not be problems to crops associated with salt if the EC remains below 750 µmhos/cm. CSPA Comments, Central Valley Water Quality Control Board, City of Davis NPDES Permit Revisions. 1 August 2010, page 27 of 33. The discharge of EC or TDS may exceed water quality objectives for each designated beneficial use: MUN: The Drinking Water maximum contaminant levels (MCLs) are water quality objectives incorporated into the Basin Plan Chemical Constituents by reference. The MCL for TDS is 500 mg/l as the recommended level, 1,000 mg/l as an upper level and 1,500 mg/l as a short term maximum. *McKee and Wolf* (1971 Water Quality Criteria) cites that waters above 4,000 mg/l TDS are generally unfit for human use. AGR: The Basin Plan states, on Page III-3.00 Chemical Constituents, that "Waters shall not contain constituents in concentrations that adversely affect beneficial uses." The Basin Plan's "Policy for Application of Water Quality Objectives" provides that in implementing narrative water quality objectives, the Regional Board will consider numerical criteria and guidelines developed by other agencies and organizations. This application of the Basin Plan is consistent with Federal Regulations, 40CFR 122.44(d). For EC, Ayers R.S. and D.W. Westcott, Water Quality for Agriculture, Food and Agriculture Organization of the United Nations – Irrigation and Drainage Paper No. 29, Rev. 1, Rome (1985), levels above 700 µmhos/cm will reduce crop yield for sensitive plants. The State Water Resources Control Board's Irrigation with Reclaimed Municipal Waste (July 1984) and McKee and Wolf (1971 Water Quality Criteria), state that waters with TDS above 2,100 mg/l are unsuitable for any irrigation under most conditions. IND: McKee and Wolf (1971 Water Quality Criteria) lists the limiting TDS concentrations for numerous industrial uses in mg/l; boiler feed water 50-3000, brewing 500-1000, canning 850, general food processing 850 and paper manufacturing 80-500. COLD/MIGR/SPWN: In a *Biological Significance* document sent to the Regional Board regarding the Musco Olive facility, dated November 1st 2006, James M. Harrington, Staff Water Quality Biologist with the California Department of Fish and Game, citing McKee and Wolf (1971 Water Quality Criteria) wrote that: "Surveys of inland fresh waters indicates that good mixes of
fish fauna are found where conductivity values range between 150 and 500 umhos/cm. Even in the most alkaline waters, the upper tolerance limit for aquatic life is approximately 2000 umhos/cm." The beneficial uses of receiving streams may be degraded by salt concentrations in wastewater discharges and Federal Regulation, 40 CFR 122.4 (a), (d) and (g) require that no permit may be issued when the conditions of the permit do not provide for compliance with the applicable requirements of the CWA, or regulations promulgated under the CWA, when imposition of conditions cannot ensure compliance with applicable water quality requirements and for any discharge inconsistent with a plan or plan amendment approved under Section 208(b) of the CWA. California Water Code, section 13377, requires that: "Notwithstanding any other provision of this division, the state board and the regional boards shall, as required or authorized by the Federal Water Pollution Control Act, as amended, issue waste discharge and dredged or fill material permits which apply and ensure compliance with all applicable provisions of the act and acts amendatory thereof or supplementary, thereto, together with any more stringent effluent standards or limitations necessary to implement water quality control plans, or for the protection of beneficial uses, or to prevent nuisance." The Region 5 Permits does not protect the beneficial uses of the receiving stream, the Sacramento River, and therefore does not comply with the requirements of Federal Regulations and the California Water Code. The Central Valley Basin Plan, page IV-15.00, contains a *Controllable Factors Policy* which states that: "Controllable water quality factors are not allowed to cause further degradation of water quality in instances where other factors have already resulted in water quality objectives being exceeded. Controllable water quality factors are those actions, conditions, or circumstances resulting from human activities that may influence the quality of the waters of the State, that are subject to the authority of the State Water or Regional Water Board, and that may be reasonably controlled." The discharge of salt (EC or TDS) may be a designated waste as defined by the CWC, Section 13173(b) as nonhazardous waste that contains pollutants that could be released in concentrations exceeding applicable water quality objectives; which must be regulated in accordance with Title CCR 27. The discharge of salt may exceed the Toxicity and Chemical Constituents (drinking water MCL and at concentrations that adversely affect the industrial and agricultural beneficial uses) water quality objectives. CCR, Title 27, Section 20210, requires that designated wastes shall only be discharged at Class I or Class II waste management units. Designated waste must be kept out of the receiving stream. The Region 5 Permits consistently allow the discharge of a designated waste to surface water in violation of CCR Title 27. The discharge exceeds the MCLs for EC presenting a reasonable potential to exceed the water quality objective. The discharge exceeds the agricultural water quality goal and the MCL for EC. The proposed Order fails to establish an effluent limitation for EC that are protective of the Chemical Constituents water quality objective. The City's wastewater discharge increases concentrations of EC to unacceptable concentrations adversely affecting the agricultural CSPA Comments, Central Valley Water Quality Control Board, City of Davis NPDES Permit Revisions. 1 August 2010, page 29 of 33. beneficial use. The wastewater discharge not only presents a reasonable potential, but actually causes, violation of the Chemical Constituent Water Quality Objective in the Basin Plan. The available literature regarding safe levels of EC for irrigated agriculture mandate that an Effluent Limitation for EC is necessary to protect the beneficial use of the receiving stream in accordance with the Basin Plan and Federal Regulations. Failure to establish effluent limitations for EC that are protective of the Chemical Constituents water quality objective blatantly violates the law. Federal Regulation, 40 CFR 122.44, which mandates an effluent limitation be established if a discharge exceeds a water quality objective. MCLs are incorporated into the Basin Plan by reference. State Board Water Quality Order 2005-005 states, in part that: "...the State Board takes official notice [pursuant to Title 23 of California Code of Regulations, Section 648.2] of the fact that operation of a large-scale reverse osmosis treatment plant would result in production of highly saline brine for which an acceptable method of disposal would have to be developed. Consequently, any decision that would require use of reverse osmosis to treat the City's municipal wastewater effluent on a large scale should involve thorough consideration of the expected environmental effects." The State Board does not have the authority to ignore Federal Regulation. Bay Area treatment plants have been utilized for RO brine disposal previously. 9. The proposed Permit contains no antidegradation analysis and does not comply with the requirements of Section 101(a) of the Clean Water Act, Federal Regulations 40 CFR § 131.12, the State Board's Antidegradation Policy (Resolution 68-16) and California Water Code (CWC) Sections 13146 and 13247. The proposed Permit would significantly relax effluent limitations for ammonia, and copper. The proposed permit does not contain any discussion of the proposed relaxation of limitations with regard to the Antidegradation Policy or Federal antidegradation regulation. CWC Sections 13146 and 13247 require that the Board in carrying out activities which affect water quality shall comply with state policy for water quality control unless otherwise directed by statute, in which case they shall indicate to the State Board in writing their authority for not complying with such policy. The State Board has adopted the Antidegradation Policy (Resolution 68-16), which the Regional Board has incorporated into its Basin Plan. The Regional Board is required by the CWC to comply with the Antidegradation Policy. Section 101(a) of the Clean Water Act (CWA), the basis for the antidegradation policy, states that the objective of the Act is to "restore and maintain the chemical, biological and physical integrity of the nation's waters." Section 303(d)(4) of the CWA carries this further, referring explicitly to the need for states to satisfy the antidegradation regulations at 40 CFR § 131.12 before taking action to lower water quality. These regulations (40 CFR § 131.12(a)) describe the CSPA Comments, Central Valley Water Quality Control Board, City of Davis NPDES Permit Revisions. 1 August 2010, page 30 of 33. federal antidegradation policy and dictate that states must adopt both a policy at least as stringent as the federal policy as well as implementing procedures. California's antidegradation policy is composed of both the federal antidegradation policy and the State Board's Resolution 68-16 (State Water Resources Control Board, Water Quality Order 86-17, p. 20 (1986) ("Order 86-17); Memorandum from Chief Counsel William Attwater, SWRCB to Regional Board Executive Officers, "federal Antidegradation Policy," pp. 2, 18 (Oct. 7, 1987) ("State Antidegradation Guidance")). As a state policy, with inclusion in the Water Quality Control Plan (Basin Plan), the antidegradation policy is binding on all of the Regional Boards (Water Quality Order 86-17, pp. 17-18). Implementation of the state's antidegradation policy is guided by the State Antidegradation Guidance, SWRCB Administrative Procedures Update 90-004, 2 July 1990 ("APU 90-004") and USEPA Region IX, "Guidance on Implementing the Antidegradation Provisions of 40 CFR 131.12" (3 June 1987) ("Region IX Guidance"), as well as Water Quality Order 86-17. The Regional Board must apply the antidegradation policy whenever it takes an action that will lower water quality (State Antidegradation Guidance, pp. 3, 5, 18, and Region IX Guidance, p. 1). Application of the policy does not depend on whether the action will actually impair beneficial uses (State Antidegradation Guidance, p. 6). Actions that trigger use of the antidegradation policy include issuance, re-issuance, and modification of NPDES and Section 404 permits and waste discharge requirements, waiver of waste discharge requirements, issuance of variances, relocation of discharges, issuance of cleanup and abatement orders, increases in discharges due to industrial production and/or municipal growth and/other sources, exceptions from otherwise applicable water quality objectives, etc. (State Antidegradation Guidance, pp. 7-10, Region IX Guidance, pp. 2-3). Both the state and federal policies apply to point and nonpoint source pollution (State Antidegradation Guidance p. 6, Region IX Guidance, p. 4). 10. Effluent limitations for ammonia have been modified in the proposed Permit that were not the subject of the State Board's remand back to the Regional Board and are included contrary to the Federal Requirements in federal regulation 40 CFR 122.62(a) which specifies cases for modification of an NPDES permit. The proposed Permit does not contain an Effluent Limitation for ammonia in violation of Federal Regulations 40 CFR 122.44. Federal Regulations, 40 CFR 122.62, contains limited reasons why a permit can be reopened and modified. Modification of the Receiving Water Limitations, which was not addressed in the State Board remand, for temperature and turbidity does not meet any of the tests required to reopen and modify the permit. The proposed Permit does not address the regulatory requirements or standards for reopening and modifying the permit for ammonia. The Effluent Limitations for ammonia have been relaxed based on the application of a maximum discharge limitation for pH of 8.0. The City of Davis operates a wastewater pond system which has been
well documented to exceed a pH of 8.0 which is typical of wastewater pond systems. The relaxation of ammonia limitations based on a lower pH is not protective of the beneficial uses of the receiving stream since the pond system is likely to again violate the lower pH limitation. # 11. The proposed Permit contains Effluent Limitations for ammonia and copper less stringent than the existing permit contrary to the Antibacksliding requirements of the Clean Water Act and Federal Regulations, 40 CFR 122.44 (I)(1). Under the Clean Water Act (CWA), point source dischargers are required to obtain federal discharge (NPDES) permits and to comply with water quality based effluent limits (WQBELs) in NPDES permits sufficient to make progress toward the achievement of water quality standards or goals. The antibacksliding and antidegradation rules clearly spell out the interest of Congress in achieving the CWA's goal of continued progress toward eliminating all pollutant discharges. Congress clearly chose an overriding environmental interest in clean water through discharge reduction, imposition of technological controls, and adoption of a rule against relaxation of limitations once they are established. Upon permit reissuance, modification, or renewal, a discharger may seek a relaxation of permit limitations. However, according to the CWA, relaxation of a WQBEL is permissible only if the requirements of the antibacksliding rule are met. The antibacksliding regulations prohibit EPA from reissuing NPDES permits containing interim effluent limitations, standards or conditions less stringent than the final limits contained in the previous permit, with limited exceptions. These regulations also prohibit, with some exceptions, the reissuance of permits originally based on best professional judgment (BPJ) to incorporate the effluent guidelines promulgated under CWA §304(b), which would result in limits less stringent than those in the previous BPJ-based permit. Congress statutorily ratified the general prohibition against backsliding by enacting §§402(o) and 303(d)(4) under the 1987 Amendments to the CWA. The amendments preserve present pollution control levels achieved by dischargers by prohibiting the adoption of less stringent effluent limitations than those already contained in their discharge permits, except in certain narrowly defined circumstances. When attempting to backslide from WQBELs under either the antidegradation rule or an exception to the antibacksliding rule, relaxed permit limits must not result in a violation of applicable water quality standards. The general prohibition against backsliding found in \$402(o)(1)\$ of the Act contains several exceptions. Specifically, under <math>\$402(o)(2)\$, a permit may be renewed, reissued, or modified to contain a less stringent effluent limitation applicable to a CSPA Comments, Central Valley Water Quality Control Board, City of Davis NPDES Permit Revisions. 1 August 2010, page 32 of 33. pollutant if: (A) material and substantial alterations or additions to the permitted facility occurred after permit issuance which justify the application of a less stringent effluent limitation: (B)(i) information is available which was not available at the time of permit issuance (other than revised regulations, guidance, or test methods) and which would have justified the application of a less stringent effluent limitation at the time of permit issuance; or (ii) the Administrator determines that technical mistakes or mistaken interpretations of law were made in issuing the permit under subsection (a)(1)(B) of this section; (C) a less stringent effluent limitation is necessary because of events over which the permittee has no control and for which there is no reasonably available remedy [(e.g., Acts of God)]; (D) the permittee has received a permit modification under section 1311(c), 1311(g), 1311(h), 1311(i), 1311(k), 1311(n), or 1326(a) of this title; or (E) the permittee has installed the treatment facilities required to meet the effluent limitations in the previous permit, and has properly operated and maintained the facilities, but has nevertheless been unable to achieve the previous effluent limitations, in which case the limitations in the reviewed, reissued, or modified permit may reflect the level of pollutant control actually achieved (but shall not be less stringent than required by effluent guidelines in effect at the time of permit renewal, reissuance, or modification). Even if a discharger can meet either the requirements of the antidegradation rule under §303(d)(4) or one of the statutory exceptions listed in §402(o)(2), there are still limitations as to how far a permit may be allowed to backslide. Section 402(o)(3) acts as a floor to restrict the extent to which BPJ and water quality-based permit limitations may be relaxed under the antibacksliding rule. Under this subsection, even if EPA allows a permit to backslide from its previous permit requirements, EPA may never allow the reissued permit to contain effluent limitations which are less stringent than the current effluent limitation guidelines for that pollutant, or which would cause the receiving waters to violate the applicable state water quality standard adopted under the authority of §303.49. Federal regulations 40 CFR 122.44 (l)(1) have been adopted to implement the antibacksliding requirements of the CWA: - (l) Reissued permits. (1) Except as provided in paragraph (l)(2) of this section when a permit is renewed or reissued, interim effluent limitations, standards or conditions must be at least as stringent as the final effluent limitations, standards, or conditions in the previous permit (unless the circumstances on which the previous permit was based have materially and substantially changed since the time the permit was issued and would constitute cause for permit modification or revocation and reissuance under Sec. 122.62.) - (2) In the case of effluent limitations established on the basis of Section 402(a)(1)(B) of the CWA, a permit may not be renewed, reissued, or modified on the basis of effluent guidelines promulgated under section 304(b) subsequent to the original issuance of such permit, to contain effluent limitations which are less stringent than the comparable effluent limitations in the previous permit. - (i) Exceptions--A permit with respect to which paragraph (l)(2) of this section applies may be renewed, reissued, or modified to contain a less stringent effluent limitation applicable to a pollutant, if: - (A) Material and substantial alterations or additions to the permitted facility occurred after permit issuance which justify the application of a less stringent effluent limitation; (B)(1) Information is available which was not available at the time of permit issuance - (other than revised regulations, guidance, or test methods) and which would have justified the application of a less stringent effluent limitation at the time of permit issuance; or (2) The Administrator determines that technical mistakes or mistaken interpretations of law were made in issuing the permit under section 402(a)(1)(b); - (C) A less stringent effluent limitation is necessary because of events over which the permittee has no control and for which there is no reasonably available remedy; - (D) The permittee has received a permit modification under section 301(c), 301(g), 301(h), 301(i), 301(k), 301(n), or 316(a); or - (E) The permittee has installed the treatment facilities required to meet the effluent limitations in the previous permit and has properly operated and maintained the facilities but has nevertheless been unable to achieve the previous effluent limitations, in which case the limitations in the reviewed, reissued, or modified permit may reflect the level of pollutant control actually achieved (but shall not be less stringent than required by effluent guidelines in effect at the time of permit renewal, reissuance, or modification). - (ii) Limitations. In no event may a permit with respect to which paragraph (l)(2) of this section applies be renewed, reissued, or modified to contain an effluent limitation which is less stringent than required by effluent guidelines in effect at the time the permit is renewed, reissued, or modified. In no event may such a permit to discharge into waters be renewed, issued, or modified to contain a less stringent effluent limitation if the implementation of such limitation would result in a violation of a water quality standard under section 303 applicable to such waters. Thank you for considering these comments. If you have questions or require clarification, please don't hesitate to contact us. Sincerely, Bill Jennings, Executive Director California Sportfishing Protection Alliance